Human microglia convert l-tryptophan into the neurotoxin quinolinic acid.

نویسندگان

  • M P Heyes
  • C L Achim
  • C A Wiley
  • E O Major
  • K Saito
  • S P Markey
چکیده

Immune activation leads to accumulations of the neurotoxin and kynurenine pathway metabolite quinolinic acid within the central nervous system of human patients. Whereas macrophages can convert L-tryptophan to quinolinic acid, it is not known whether human brain microglia can synthesize quinolinic acid. Human microglia, peripheral blood macrophages and cultures of human fetal brain cells (astrocytes and neurons) were incubated with [13C6]L-tryptophan in the absence or presence of interferon gamma. [13C6]Quinolinic acid was identified and quantified by gas chromatography and electron-capture negative-chemical ionization mass spectrometry. Both L-kynurenine and [13C6]quinolinic acid were produced by unstimulated cultures of microglia and macrophages. Interferon gamma, an inducer of indoleamine 2,3-dioxygenase, increased the accumulation of L-kynurenine by all three cell types (to more than 40 microM). Whereas large quantities of [13C6]quinolinic acid were produced by microglia and macrophages (to 438 and 1410 nM respectively), minute quantities of [13C6]quinolinic acid were produced in human fetal brain cultures (not more than 2 nM). Activated microglia and macrophage infiltrates into the brain might be an important source of accelerated conversion of L-tryptophan into quinolinic acid within the central nervous system in inflammatory diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human macrophages convert L-tryptophan into the neurotoxin quinolinic acid.

Substantial increases in the concentrations of the excitotoxin and N-methyl-D-aspartate-receptor agonist quinolinic acid (QUIN) occur in human patients and non-human primates with inflammatory diseases. Such increases were postulated to be secondary to induction of indoleamine 2,3-dioxygenase in inflammatory cells, particularly macrophages, by interferon-gamma. To test this hypothesis, human pe...

متن کامل

Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types.

Substantial increases in the tryptophan-kynurenine pathway metabolites, l-kynurenine and the neurotoxin quinolinic acid, occur in human brain, blood and systemic tissues during immune activation. Studies in vitro have shown that not all human cells are capable of synthesizing quinolinate. To investigate further the mechanisms that limit l-kynurenine and quinolinate production, the activities of...

متن کامل

The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress.

Quinolinic acid is a product of tryptophan degradation and may serve as a precursor for NAD(+), an important enzymatic cofactor for enzymes such as the DNA repair protein PARP. Pathologic accumulation of quinolinic acid has been found in neurodegenerative disorders including Alzheimer and Huntington disease, where it is thought to be toxic for neurons by activating the N-methyl-D-aspartate (NMD...

متن کامل

Effects of endogenous neurotoxin quinolinic acid on reactive oxygen species production by Fenton reaction catalyzed by iron or copper

The tryptophan metabolite, quinolinic (2,3-pyridinedicarboxylic) acid, is known as an endogenous neurotoxin. Quinolinic acid can form coordination complexes with iron or copper. The effects of quinolinic acid on reactive oxygen species production in the presence of iron or copper were explored by a combination of chemical assays, classical site-specific and ascorbic acid-free variants of the de...

متن کامل

Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques.

This study investigated the sources of quinolinic acid, a neurotoxic tryptophan-kynurenine pathway metabolite, in the brain and blood of HIV-infected patients and retrovirus-infected macaques. In brain, quinolinic acid concentrations in HIV-infected patients were elevated by > 300-fold to concentrations that exceeded cerebrospinal fluid (CSF) by 8.9-fold. There were no significant correlations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 320 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1996